

Mark Scheme

October 2019

Pearson Edexcel IAL Mathematics C34 Paper WMA02/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS General Instructions for Marking

- 1. The total number of marks for the paper is 125.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - **A** marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - **B** marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol \sqrt{w} will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- Where a candidate has made multiple responses <u>and indicates which response they wish to submit</u>, examiners should mark this response.
 If there are several attempts at a question <u>which have not been crossed out</u>, examiners should mark

the final answer which is the answer that is the most complete.

- 6. Ignore wrong working or incorrect statements following a correct answer.
- 7. Mark schemes will firstly show the solution judged to be the most common response expected from candidates. Where appropriate, alternatives answers are provided in the notes. If examiners are not sure if an answer is acceptable, they will check the mark scheme to see if an alternative answer is given for the method used.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles)

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^2 + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ...

 $(ax^2 + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. Formula

Attempt to use the correct formula (with values for *a*, *b* and *c*)

3. Completing the square

Solving $x^2 + bx + c = 0$: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

<u>Use of a formula</u>

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Notes	Marks
1	$3\sin x -$	$\cos x$	
(a)	$R = \sqrt{10}$	Must be exact. Condone $R = \pm \sqrt{10}$	B1
	$\tan \alpha = \frac{1}{3} \Longrightarrow \alpha = \dots$	Condone $\tan \alpha = \pm \frac{1}{3} \text{ or } \tan \alpha = \pm \frac{3}{1}$ $\sin \alpha = \pm \frac{1}{\sqrt{10}} \text{ or } \sin \alpha = \pm \frac{3}{\sqrt{10}}$ $\operatorname{or } \cos \alpha = \pm \frac{1}{\sqrt{10}} \text{ or } \cos \alpha = \pm \frac{3}{\sqrt{10}}$ $\Rightarrow \alpha = \dots$ Implied by 0.32 or 18.4°	M1
	$\alpha = 0.322$	Awrt 0.322 following a correct statement	A1
			(3)
(b)(i)	$19 - \sqrt{10}$	$19 - \sqrt[n]{10}$ or awrt 15.8 (ft on their <i>R</i>)	B1ft
(ii)	$\frac{\pi t}{12} + 4 - "0.322" = \frac{3\pi}{2} \Longrightarrow t = \dots$	Condone $\frac{\pi t}{12} + 4 \pm \text{their } \alpha = \frac{3\pi}{2} \Rightarrow t = \dots$ Don't be too concerned by the mechanics of their attempt to solve the equation. Note that 15.95 is evidence that $\frac{5\pi}{2}$ has been selected and scores M0	M1
	t = 3.95	Awrt 3.95 Condone 3hrs 57 mins or 3:57 am If multiple answers are given (and not rejected) withhold the final A1	A1
			(3) Total 6
			I otal 6

Extra Note 1:

Although highly unlikely, it is possible to do (b)(ii) in degrees. In such an attempt the 4 would also need to be changed to degrees.

M1:
$$\frac{\pi t}{12} + 4 - "0.322" = \frac{3\pi}{2} \Leftrightarrow \frac{180t}{12} + 4 \times \frac{180}{\pi} - "18.4" = 270$$

Extra Note 2:

You may see attempts that rely on differentiation. This is essentially the same and would require candidates selecting the second zero

M1:
$$A\cos\left(\frac{\pi t}{12} + 4 \pm "0.322"\right) = 0 \Rightarrow \frac{\pi t}{12} + 4 \pm "0.322" = \frac{3\pi}{2} \Rightarrow t = \dots$$

Extra Note 3: Answers without working can score all marks (even though for (b) they were asked to use part (a))

Question Number	Scheme	Notes	Marks
2	$f(x) = \left(\frac{1}{3}\right)^{-1}$	$(-x)^{-2}$	
(a)	$\left(\frac{1}{3} - x\right)^{-2} = \left(\frac{1}{3}\right)^{-2} \left(1 - 3x\right)^{-2}$	$\left(\frac{1}{3}\right)^{-2}$ or $\frac{1}{3^{-2}}$ or 3^2 or 9 oe seen before the bracket	B1
	$\left(\frac{1}{3}\right)^{-2}\left(\underbrace{1+(-2)(-3x)+\frac{(-2)(-3)}{2!}(-3x)}_{2!}\right)$	$\frac{x^{2}+\frac{(-2)(-3)(-4)}{3!}(-3x)^{3}+}{3!}$	
	M1: Correct form for the 3 rd or 4 th term with i Either $\frac{(-2)(-3)}{2!}(x)^2$ or $\frac{(-2)(-3)(-4)}{3!}($	ndex -2 and the correct power of x . x) ³ but condone missing brackets.	M1A1
	Do not accept vector or 'C' notation for the co A1: Correct underlined expression oe. $FYI = 1$	efficients. + $6x + 27x^2 + 108x^3 +$	
	$=9+54x+243x^2+972x^3+$	All 4 terms correct and simplified. Isw after a correct answer	A1
			(4)
(D)	$(a+bx)(9+54'x+243'x^2+972'x^3+) =+3x+2$ "54" $a + 9"b = 3$ or "243" $a + 54"b = 27$	Expands $(a+bx) \times$ their part (a) and sets their x coefficient = 3 or their x^2 coefficient = 27	M1
	"54" a + "9" b = 3, "243" a + "54" b = 27 ⇒ a =, b =	Sets their x coefficient = 3 and their x^2 coefficient = 27 and attempts to solve. Don't be concerned by the process of their attempt to solve. For example calculators may be used.	dM1
	$a = -\frac{1}{9}, b = 1$	Correct values or exact equivalent. Condone $a = -0.1$	A1
			(3)
(c)	"972" <i>a</i> + "243" <i>b</i> =	Attempts their $a \times$ their 972 + their $b \times$ their 243	M1
	=135	CSO. It must follow a correct (a) and (b) Note that $135x^2$ is A0the question demands the coefficient,	A1
			Total 9

Extra note: You may see an attempt in (a) as follows

$$f(x) = \left(\frac{1}{3} - x\right)^{-2} = \left(\frac{1}{3}\right)^{-2} + \left(-2\right)\left(\frac{1}{3}\right)^{-3}\left(-x\right)^{1} + \frac{(-2)(-3)}{2}\left(\frac{1}{3}\right)^{-4}\left(-x\right)^{2} + \frac{(-2)(-3)(-4)}{3!}\left(\frac{1}{3}\right)^{-5}\left(-x\right)^{3}$$

It can be marked in the same way with B1 being $\left(\frac{1}{3}\right)^{-2} + \dots$

Question Number	Scheme	Notes	Marks
3(a)	$g(x) \ge -1$	Allow equivalents e.g. $y \ge -1$, $y \in [-1, \infty)$, $g \ge -1$, Range ≥ -1 etc but not $f(x) \ge -1$ or $x \ge -1$	B1
(b)			(1)
(0)	$fg(x) = \frac{5(2x^2 - 1) + 2}{2x^2 - 1 - 3}$	Correct attempt at $fg(x)$, condoning slips on the bracket.	M1
	$=\frac{10x^2-3}{2x^2-4} \qquad \left(x\neq\pm\sqrt{2}\right)$	Allow other simplified forms. (Note that the domain is not required). ISW after a correct answer	A1
		· · · · · ·	(2)
(c)	$x = \frac{5y+2}{y-3} \Longrightarrow xy - \dots = 5y+2$ $\Longrightarrow xy \pm 5y = \dots$	For an attempt to change the subject. For this mark they must proceed as far as attempting to get the two relevant terms on the same side of the equation. Condone	M1
	$y(x-5) = 3x+2$ $\Rightarrow y = 3x + 2$	slips in sign, copying errors, etc and then takes out a factor of y and divides by their $(x-5)$. Again, condone	dM1
		slips in sign etc.	
	$y = f^{-1}(x) = \frac{3x+2}{x-5} (x \neq 5)$	Correct inverse function or exact equivalent. (Note that the domain is not required) Allow $y = - \text{or } f^{-1}(x) = \dots$	A1
			(3)
(d)	$\frac{5x+2}{x-3} = \frac{3x+2}{x-5} \text{ or } \frac{5x+2}{x-3} =$ Attempts to use one of these equations Follow through	= x or $\frac{3x+2}{x-5} = x \Rightarrow 3\text{TQ in } x$ tions and proceeds to find 3TQ in x. n on their f ⁻¹ (x)	M1
	$x^2 - 8x - 2 = 0$	Correct quadratic. Accept an equivalent equation in which the terms have been collected such as $x^2 - 8x = 2$ or $2x^2 - 16x - 4 = 0$	Al
	$x = \frac{8 \pm \sqrt{64 + 8}}{2}$	Solves by formula or completing the square. It is dependent upon the first M1. Only accept factorisation if it factorises. Decimal answers correct to 3sf would imply this mark.	dM1
	$x = 4 \pm 3\sqrt{2}$	Cao (both needed). If both are given and one is subsequently rejected then withhold this mark.	A1
			(4)
			Total 10

Extra note:

In (b) and / or (c) you may see division. Eg in (b) f may be adapted to $5 \pm \frac{A}{x-3}$ first before $5 + \frac{17}{2x^2-4}$ In part (c) look for

M1: x =	$=\frac{5y+2}{\Rightarrow} \Rightarrow x =$	$5 + \frac{17}{3} \Rightarrow x$	$x - 5 = \frac{17}{1000}$ cond	doning slips in sign
	y-3	y-3	y-3	

dM1: $\Rightarrow x-5 = \frac{17}{y-3} \Rightarrow y = \frac{17}{x-5} + 3$ condoning slips in sign. The form of the expression must be correct

Question Number	Scheme	Notes	Marks
4(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \cos 2x - 2x \sin 2x$	Uses the product rule to obtain an expression of the form $\cos 2x \pm kx \sin 2x$ If the rule is stated it must be correct.	M1
		Correct derivative	A1
	$\cos 2x - 2x \sin 2x = 0 \Longrightarrow 2x \tan 2x = 1$	States or sets $\frac{dy}{dx} = 0$ (which may be implied by a correct equation) and divides by $\cos 2x$ to form an equation in $\tan 2x$ Alternatively states or sets $\frac{dy}{dx} = 0$ and divides by $\sin 2x$ to form an equation in $\cot 2x$	M1
	$=\frac{1}{2}\arctan\left(\frac{1}{2x}\right)^*$	Correct completion to printed answer with no errors. Do NOT condone $\arctan\left(\frac{1}{2x}\right) \equiv \tan^{-1}\left(\frac{1}{2x}\right)$ The bracket is not necessary and all of the lines (or their equivalent) as seen in the scheme must be seen. It cannot be scored following an equation in $\cot 2x$ and must follow the line $2x \tan 2x = 1$ or $\tan 2x = \frac{1}{2x}$	A1*
			(4)
(b)	$x_1 = \frac{1}{2} \arctan\left(\frac{1}{2(0.5)}\right) = 0.39$	Attempts $\frac{1}{2} \arctan\left(\frac{1}{2(0.5)}\right) = \dots$ and achieves an awrt 0.39	M1
	awrt 0.3927	Awrt 0.3927 or $\frac{\pi}{8}$	A1
	$x_2 = 0.4525$	Awrt 0.4525 Ignore additional values, say x_3 etc	A1
			(3)
			Total 7

Question Number	Scheme	Notes	Marks
5	$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{2h^{\frac{3}{2}}}{5t^{\frac{3}{2}}}$		
(a)	$\int \frac{1}{2h^{\frac{3}{2}}} \mathrm{d}h = \int \frac{1}{5t^2} \mathrm{d}t$	Correct separation of variables (allow equivalent forms) There is no need to see the integral signs but the dh and dt must be present and in the correct positions.	B1
	$L^{-\frac{1}{2}}$ $1_{c^{-1}}$ (z)	Reaches $\alpha h^{-\frac{1}{2}} = \beta t^{-1} (+c)$	M1
	$-n^{2} = -\frac{1}{5}t^{2} + (c)$	Correct integration with no requirement for $+c$	A1
	$-(1)^{-\frac{1}{2}} = -\frac{1}{5}(1)^{-1} + c \Longrightarrow c = \dots$	Uses given conditions at an appropriate point in their integrated form to find a constant of integration. Alt uses $\left[-h^{-\frac{1}{2}}\right]_{1}^{h} = \left[-\frac{1}{5}t^{-1} + c\right]_{1}^{t}$	M1
	$-h^{-\frac{1}{2}} = -\frac{1}{5}t^{-1} - \frac{4}{5}$	Correct equation, accept all forms. Eg. $5h^{-\frac{1}{2}} = t^{-1} + 4$	A1
	$-h^{-\frac{1}{2}} = -\frac{1}{5}t^{-1} - \frac{4}{5} \Rightarrow \frac{1}{\sqrt{h}} = \frac{1}{5t} + \frac{4}{5} = \frac{1}{5t}$ Attempts to use correct algebra starting from Look for an attempt that has • A single fraction being formed before "in where the candidate inverts each term • A correct attempt to square. Eg. Each single	$\frac{1+4t}{5t} \Rightarrow \sqrt{h} = \frac{5t}{1+4t} \Rightarrow h = \dots$ $\alpha h^{-\frac{1}{2}} = \beta t^{-1} + c \text{ to make } h \text{ the subject.}$ inverting" oe. Do not allow attempts de is squared rather than each term	M1
	$h = \frac{25t^2}{(1+4t)^2} (a = 25, b = 4)$	cao	A1
			(7)
(b)	Max $h = \frac{25}{16}$ or 1.5625	Max $h = \frac{\text{Their } a}{\text{Their } b^2}$ from an answer to (a) in the form $h = \frac{at^2}{(c+bt)^2}$ $a, b > 0$ Implied by 1.56 (ie answer to 3sf) Do NOT award if (a) is in the form $h = \frac{at^2}{(c-bt)^2}$ $a, b > 0$	M1
		$\frac{25}{16} \text{ oe following } h = \frac{25t^2}{(1+4t)^2} \text{ oe}$	A1

	Condone for eg $h \leq \frac{25}{16}$ or $0 < h < \frac{25}{16}$	
		(2)
		Total 9

Question Number	Scheme	Notes	Marks
6	$\frac{\sec x}{1 + \sec x} - \frac{\sec x}{1 - \sec x} = 2 \operatorname{cosec}^2 x$		
(a)	sec r sec r sec r	$x - \sec^2 x - \sec x - \sec^2 x$	
	$\frac{360x}{1+\sec x} - \frac{360x}{1-\sec x} = \frac{360x}{1-\sec x}$	$\frac{1 - \sec^2 r}{1 - \sec^2 r}$	M1
	Attempts to express lh	s as a single fraction	
	$=\frac{-2\sec^2 x}{1-\sec^2 x} = \frac{-2\sec^2 x}{-\tan^2 x}$	Uses $1 - \sec^2 x = \pm \tan^2 x$ on the denominator	M1
	$\frac{2}{\cos^2 x} \times \frac{\cos^2 x}{\sin^2 x} = 2\csc^2 x^*$	Reaches rhs with no errors and at least one intermediate line of working	A1*
			(3)
(b)	$\frac{\sec 2\theta}{\cos^2\theta} = \frac{\sec 2\theta}{\cos^2\theta}$	$\frac{\theta}{2} = 3 - 2 \cot^2 2\theta$	
-	$\frac{1 + \sec 2\theta}{1 + \sec 2\theta}$		
	$2\csc^2 2\theta = 3 - 2\cot^2 2\theta$	Condone slips	M1
-	$2\operatorname{cosec}^2 2\theta = 3 - 2(\operatorname{cosec}^2 2\theta - 1)$		
	or $2(1 + \cot^2 2\theta) = 3 - 2 \cot^2 2\theta$	Uses $\pm 1 \pm \cot^2 2\theta = \pm \csc^2 2\theta$ Correct bracketing should be seen or implied.	M1
-		Correct value for $\csc^2 2\theta$, $\cot^2 2\theta$ but	
	$\csc^2 2\theta = \frac{5}{4}$ or $\cot^2 2\theta = \frac{1}{4}$	may be $\sin^2 2\theta = \frac{4}{5}$, $\cos^2 2\theta = \frac{1}{5}$ or	A1
		$\tan^2 2\theta = 4$	
	$\csc 2\theta = (\pm)\sqrt{\frac{5}{4}} \Rightarrow \sin \theta$	$2\theta = (\pm)\sqrt{\frac{4}{5}} \Longrightarrow 2\theta = \dots$	
	or		
	$\cot 2\theta = (\pm)\sqrt{\frac{1}{4}} \Longrightarrow \tan 2\theta = (\pm)2 \Longrightarrow 2\theta = \dots$		M1
	Correct processing to reach values for $2\theta = \dots$ (may not be called 2θ)		
	May not be awarded from imposs	ible trig. values, eg $\sin^2 2\theta = 4$	
	$(2\theta) = 1.107148, 2.03444,$	EXI	
	4.24874, 5.1760365	FYI	
	$\theta = 0.554, 1.02, 2.12, 2.59$	Awrt 2 of these	Al
		Awrt all 4 angles	A1
	range and de range and de range and de range and de	ze	
		2	(6)
			Total 9

Extra Notes: There are many different ways to proceed from $2\csc^2 2\theta = 3 - 2\cot^2 2\theta$

2nd M is for an attempt to get in a single trig identity.

Eg
$$2\csc^2 2\theta = 3 - 2\cot^2 2\theta \Longrightarrow 2 = 3\sin^2 2\theta - 2\cos^2 2\theta \Longrightarrow \cos^2 2\theta = \frac{1}{5} \text{ or } \sin^2 2\theta = \frac{4}{5}$$

6 alt 1	$\frac{\sec x}{1 + \sec x} - \frac{\sec x}{1 - \sec x}$	$\frac{c}{2x} \equiv 2 \operatorname{cosec}^2 x$	
(a)	$\frac{\frac{1}{\cos x}}{1 + \frac{1}{\cos x}} - \frac{\frac{1}{\cos x}}{1 - \frac{1}{\cos x}} = \frac{1}{\cos x + 1}$ Uses $\sec x = \frac{1}{\cos x}$ and attempts t	$-\frac{1}{\cos x - 1} = \frac{\cos x - 1 - \cos x - 1}{\cos^2 x - 1}$ o express lhs as a single fraction	M1
	$\frac{-2}{\cos^2 x - 1} = \frac{-2}{-\sin^2 x}$	Uses $\cos^2 x - 1 = \pm \sin^2 x$ on the denominator	M1
	$=2\csc^2 x^*$	Reaches rhs with no errors	A1*
			(3)

Working from both sides

6 Alt II	$\frac{\sec x}{1 + \sec x} - \frac{\sec x}{1 - \sec x}$	$\frac{x}{2x} = 2 \operatorname{cosec}^2 x$	
(a)	$\sec x (1 - \sec x) - \sec x (1 + \sec x) = 2\csc^2 x (1 - \sec^2 x)$ Attempts to multiply each term by $1 - \sec^2 x$		
	$-2\sec^2 x = 2 \times \frac{1}{\sin^2 x} \left(-\tan^2 x\right)$	Uses $1 - \sec^2 x = \pm \tan^2 x$	M1
	$-2\sec^{2} x = 2 \times \frac{1}{\sin^{2} x} \left(-\frac{\sin^{2} x}{\cos^{2} x} \right)$ AND states hence true	Reaches rhs with no errors and at least one intermediate line of working AND states hence true	A1*
			(3)

Question Number	Scheme		Notes	Mark	(S
7(a)	$2x^2 -$	3	A B C		
	$\overline{(3-2x)(1)}$	$(-x)^2 = \frac{1}{3}$	$\frac{1}{2x} + \frac{1}{1-x} + \frac{1}{(1-x)^2}$		
	$2x^2 - 3 = A(1 - 1)$	$(-x)^{2} + B(3)$	(1-2x)(1-x) + C(3-2x)		
	Multiplies both sides by $(3-2x)(1-x)^2$ in an attempt to form a correct identity.				
	Condone minor slips (say in sig	gns) but the	ere must be an attempt to pair A, B and C	1 VI I	
	with the correct factor(s).				
	M1: Correct method to obtain at least one of A, B or C				
		Allow sub	postitution of a correct value of x or arms Dan't be too concerned by the		
	$x = 1 \Longrightarrow -1 = C$	process he	erns. Don't be too concerned by the ere. It is not fully dependent on the	M1A1	
		previous N	A and may be scored from incorrect		
		A1: One c	correct constant		
	A = 6, B = -2, C = -1	Correct va	alues or correct expression	A1	
	- 2 -				(4)
(D)	$\int \frac{2x^2 - 3}{(2 - x)^2} dx = -3\ln(3 - 2x) + 2\ln(1 - x) - (1 - x)^{-1}(+c)$				
	$J(3-2x)(1-x)^2$				
	$\int \frac{-1}{1-x^2} dx \rightarrow -1(1-x)^{-1} \operatorname{oe}$	Follow the	rough their C	B1ft	
	$\int (1-x)^2 dx \forall I(1-x) \text{or} Watch \text{ for } \frac{-1}{1-x} \rightarrow \frac{1}{x-1} \checkmark$		$r \xrightarrow{1}{1-x} \rightarrow \xrightarrow{x-1}{x-1}$	DIR	
	Also accept $p \ln 3-2x $, $q \ln 1-x p \ln 2x-3 $ or		pt $p \ln 3-2x $, $q \ln 1-x p \ln 2x-3 $ or		
	$p\ln(3-2x)$ or $q\ln(1-x)$	$q\ln x-1 $.		M1	
		Also note	that any multiple of these are correct. So	1111	
		$p\ln(3-2)$	$(x) \leftrightarrow p \ln (3k - 2kx)$ where k is a constant		
		$-3\ln(3-2)$	$2x$) or $+2\ln(1-x)$ or with modulus signs.		
		Allow uns	simplified and follow through their A or		
		Note: -31	$n(2x-3)$ or $+2\ln(x-1)$ are correct as	. 1 0	
		6 _	-6 $2\ln(2r-2)$	Alft	
	$-3\ln(3-2x)+2\ln(1-x)$	$\overline{3-2x} = \overline{2}$	$2x-3 \rightarrow -5 \ln(2x-3)$		
		Allow wit Eq. $2\ln(1$	In multiples. $-r \rightarrow 2 \ln(1k - kr) \checkmark$		
		Fully corr	ect terms: Remember to isw		
		$-3\ln(3-2)$	$2x$) and $+2\ln(1-x)$		
		Allow wit	h moduli	A1	
		Allow for	example $-3\ln(3-2x) \leftrightarrow -3\ln(2x-3)$		

	Allow for example $-3\ln(3-2x) \leftrightarrow -3\ln(3k-2kx)$	
	where <i>k</i> is a constant.	
	("+c" not needed)	
		(4)
		Total 8

Question Number	Scheme	Notes	Marks
8(a)	$-1 + 4\lambda = 9 + 3\mu \qquad (1)$ $1 + 2\lambda = -7 - 5\mu \qquad (2)$ $3 - 3\lambda = 4 + 2\mu \qquad (3)$	Writes down any two of these equations	M1
	Eg. 1 & 2 : $\Rightarrow \lambda = 1 (\mu = -2)$	Full method using any two equations to to find λ or μ . Don't be too concerned with the mechanics. Allow answers from a calculator	M1
	$\lambda = 1$ and $\mu = -2$	Correct values for λ and μ	A1
	Eg. Check 3: $3-3(1) = 4+2(-2) = 0$ so true	Checks values in 3rd equation and concludes. Accept \checkmark or similar. Alternatively substitutes the correct λ and μ into the equations to give (3, 3, 0) each times and concludes.	B1
	$\begin{pmatrix} -1\\1\\3 \end{pmatrix} + "1" \begin{pmatrix} 4\\2\\-3 \end{pmatrix} \text{ or } \begin{pmatrix} 9\\-7\\4 \end{pmatrix} + "-2" \begin{pmatrix} 3\\-5\\2 \end{pmatrix}$	Uses their λ or μ to find the point of intersection. If no method is seen accept one correct coordinate ft on their λ or μ	M1
	3i + 3j	Correct vector, either form. (Condone coordinate form eg. $(3, 3, 0)$) Do not condone incorrect notation $(3\mathbf{i}, 3\mathbf{j}, 0\mathbf{k})$ This is A0	A1
			(6)
(b)	$\lambda = 3 \Longrightarrow p = 7$	Correct value for <i>p</i>	B1
(c)	$\overrightarrow{PQ} = \begin{pmatrix} 9\\-7\\4 \end{pmatrix} + \mu \begin{pmatrix} 3\\-5\\2 \end{pmatrix} - \begin{pmatrix} 11\\"7"\\-6 \end{pmatrix}$	Attempts \overrightarrow{PQ} either way around	(1) M1
	$\begin{pmatrix} 3\mu-2\\ -5\mu-14\\ 2\mu+10 \end{pmatrix} \bullet \begin{pmatrix} 3\\ -5\\ 2 \end{pmatrix} = 0 \Longrightarrow \mu = \dots \left(-\frac{42}{19}\right)$	Attempts the scalar product between \overrightarrow{PQ} and the direction of l_2 , sets = 0 and solves for μ This is dependent upon the previous M	dM1
	$Q \text{ is at} \begin{pmatrix} 9 \\ -7 \\ 4 \end{pmatrix} \pm "-\frac{42}{19}"\begin{pmatrix} 3 \\ -5 \\ 2 \end{pmatrix}$	Attempts to find coordinates of Q using $\begin{pmatrix} 9\\-7\\4 \end{pmatrix} \pm "\mu" \begin{pmatrix} 3\\-5\\2 \end{pmatrix}$ with their value of μ . If there is no working allow if one coordinate is correct ft for their μ	ddM1
	$\left(\frac{45}{19}, \frac{77}{19}, -\frac{8}{19}\right)$	Correct coordinates. Condone answer in vector form $\frac{45}{19}\mathbf{i} + \frac{77}{19}\mathbf{j} - \frac{8}{19}\mathbf{k}$.	A1
			(4)
			Total 11

Note other methods are possible in (c): Look at the solution carefully.

Alt 1:

For the dM1candidates could attempt $\overrightarrow{AQ}.\overrightarrow{PQ} = 0$ where A is the point of intersection Alt 2:

Candidates could minimise the distance PQ

For the dM1 $d^2 = (3\mu - 2)^2 + (-5\mu - 14)^2 + (2\mu + 10)^2$ which is minimised when \overrightarrow{PQ} is perpendicular to l_2

$$6(3\mu - 2) - 10(-5\mu - 14) + 4(2\mu + 10) = 0 \Longrightarrow \mu = -\frac{42}{19}$$

Alt 3:

Methods that involve angle PAQ are unlikely to score all marks as they will not produce exact coordinates.

M1: Full method to find distance AQ (which may be done in two steps) using scalar product

Attempts
$$|AP|\cos\theta = \sqrt{8^2 + 4^2 + 6^2} \times \frac{3 \times 4 - 5 \times 2 + 2 \times -3}{\sqrt{38} \times \sqrt{29}} = -\frac{8}{\sqrt{38}}$$

For correct (a) and (b) you may see $\sqrt{116}\cos 96.9^\circ$ or $\sqrt{116}\cos 83.1^\circ$ OR 1.35 uni

dM1: Full attempt to find the coordinate of Q using $\overrightarrow{OA} \pm \overrightarrow{AQ} = \begin{pmatrix} 3\\ 3\\ 0 \end{pmatrix} \pm \frac{1}{\sqrt{9+25+4}} \times \frac{8}{\sqrt{38}} \begin{pmatrix} 3\\ -5\\ 2 \end{pmatrix}$

Accept decimal attempts here: So $\overrightarrow{OA} \pm \overrightarrow{AQ} = \begin{pmatrix} 3\\ 3\\ 0 \end{pmatrix} \pm 1.35..\times \frac{1}{\sqrt{38}} \begin{pmatrix} 3\\ -5\\ 2 \end{pmatrix}$

ddM1: Attempts to find the exact coordinates of Q using $\overrightarrow{OA} \pm \overrightarrow{AQ} \begin{pmatrix} 3\\ 3\\ 0 \end{pmatrix} \pm \frac{1}{\sqrt{9+25+4}} \times \frac{8}{\sqrt{38}} \begin{pmatrix} 3\\ -5\\ 2 \end{pmatrix}$

A1: $\left(\frac{45}{19}, \frac{77}{19}, -\frac{8}{19}\right)$ or equivalent vector form

Question Number	Scheme	Notes	Marks
--------------------	--------	-------	-------

9(a)(i)		B1: " \land " shape anywhere. The branches may not be symmetrical and the graph may not intersect the <i>x</i> - axis B1: Fully correct graph in the correct position with correct intercepts. It must cross the <i>x</i> -axis and not just stop there. Don't be too concerned with slight lack of symmetry.	- B1B1
(ii)	$\frac{2a}{\frac{2}{3}a}$	 B1: ∨ Shape anywhere. The branches may not be symmetrical and the graph may not intersect the <i>y</i>- axis B1: Fully correct graph in the correct position with correct intercepts. It must cross the <i>y</i>-axis and not just stop there! Don't be too concerned with slight lack of symmetry. 	- B1B1
			(4)
(b)	(As $x > 0$) $a - x = 3x - 2a \Rightarrow$ Attempts to solve either equation which r incorrect m For example $a - x = 3x - 2a \Rightarrow a =$ But $a - x = 3x - 2a \Rightarrow a - x = 3 $. See bottom	(As $x > 0$) $a - x = 3x - 2a \Rightarrow x =$ or $a - x = -3x + 2a \Rightarrow x =$ ts to solve either equation which must be correct. It cannot be produced from incorrect modulus work. the example $a - x = 3x - 2a \Rightarrow a = 3x - 2a + x \Rightarrow a = 3x - 2a + x$ is fine. But $a - x = 3x - 2a \Rightarrow a - x = 3 x - 2 a \Rightarrow 4 x = 3a \Rightarrow x = \frac{3}{4}a$ is not. See bottom of page for SC	
	$x = \frac{3}{4}a$ or $x = \frac{1}{2}a$	One correct value	A1
	$a-x=3x-2a \Rightarrow x=$ and $a-x=-3x+2a \Rightarrow x=$		M1
	Attempt to solve both equa	ations which must be correct	
	$x = \frac{3}{4}a \text{ and } x = \frac{1}{2}a$	Both values correct and no other values	A1
			(4)
			Total 8

Note 1: Squaring approaches in (b) will lead to the correct answers but only because the solutions are both positive. Score as follows: (As x > 0)

$$(a - |x|)^{2} = (3x - 2a)^{2} \Rightarrow a^{2} - 2ax + x^{2} = 9x^{2} - 12ax + 4a^{2} \Rightarrow 8x^{2} - 10ax + 3a^{2} = 0 \Rightarrow x = \frac{3}{4}a, x = \frac{1}{2}a$$

Score M1 (For a correct equation with no incorrect work (as x > 0) A1: One correct answer M1: Attempt at factorisation A1: Second correct answer

Note 2: Watch for candidates who solve using incorrect modulus work.

$$a - |x| = |3x - 2a| \Rightarrow a - |x| = 3|x| - 2|a| \Rightarrow 4|x| = 3a \Rightarrow x = \frac{3}{4}a$$

Score SC B1 0 0 0 for one correct value

Question Number Scheme	Notes	Marks
---------------------------	-------	-------

10(a)	$\frac{\mathrm{d}u}{\mathrm{d}x} = 2$	Or $\frac{dx}{du} = \frac{1}{2}$ or $du = 2dx$ etc	B1
	$\int \frac{(3x+2)^2}{2x-1} dx = \int \frac{\left(3\frac{u+1}{2}+2\right)^2}{u} \frac{1}{2} du$	An attempt at a complete substitution with all terms (inc the dx) being replaced by ' <i>u</i> ' Condone slips	M1
	$=\frac{1}{8}\int \left(9u+42+\frac{49}{u}\right)\mathrm{d}u$	Reaches $\int \left(\alpha u + \beta + \frac{\gamma}{u}\right) du$ oe	dM1
	$=\frac{1}{8}\left[\frac{9u^{2}}{2}+42u+49\ln u\right]$	Correct integration. Allow $\ln cu \leftrightarrow \ln u$ (may see $\ln 8u$)	A1
	$=\frac{1}{8}\left[\left(\frac{9(9)^2}{2}+42(9)+49\ln^2\right)\right]$	$19 - \left(\frac{9(3)^2}{2} + 42(3) + 49 \ln 3\right)$	M1
	Correct us Eg $u=3$ and $u=9$ within their integral	e of both limits thin their integrand in ' <i>u</i> ' where ' <i>u</i> ' has been changed back to 2r-1	
	$72 + \frac{49}{8} \ln 3^*$	Obtains printed answer with no errors. All steps above, or equivalent must be seen. If candidate writes $=\frac{1}{8}\left[\frac{9u^2}{2}+42u+49\ln u\right]_3^9$ followed by given answer or awrt 78.7 just withhold the final A1*	A1*
			(6)
(b)	$V = k\pi \times \text{Answer to}(a)$	If the formula is quoted it must be correct. Eg. $V = 2\pi \int y^2 dx$ is incorrect and M0. Implied by $k\pi \times \left(72 + \frac{49}{8}\ln 3\right)$	M1
	$=\pi\left(18+\frac{49}{32}\ln 3\right)$	Correct exact answer (allow equivalent exact forms) E.g. $=\frac{\pi}{4}\left(72 + \frac{49}{8}\ln 3\right)$	A1
			(2) Total 8
			101810

Question Number	Scheme	Notes	Marks
--------------------	--------	-------	-------

11	$2x^2 + y^3 =$	=kxy	
(a)	$\frac{\mathrm{d}(y^3)}{\mathrm{d}x} = 3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{d(y^3)}{dx} = \alpha y^2 \frac{dy}{dx}$ (See alternative form **)	M1
	$\frac{\mathrm{d}(kxy)}{\mathrm{d}x} = ky + kx\frac{\mathrm{d}y}{\mathrm{d}x}$	$\frac{d(kxy)}{dx} = \alpha y + \beta x \frac{dy}{dx}$ (See alternative form **)	M1
	$4x + 3y^{2} \frac{dy}{dx} = kx \frac{dy}{dx} + ky$ Or $4x dx + 3y^{2} dy = kx dy + ky dx (**)$	All correct	A1
	$\frac{\mathrm{d}y}{\mathrm{d}x}(3y^2 - kx) = ky - 4x \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{ky - 4x}{3y^2 - kx}$	Correct expression oe. Eg. $\frac{dy}{dx} = \frac{4x - ky}{kx - 3y^2}$	A1
			(4)
(b)	$3y^2 - kx = 0$	Sets the denominator of their answer to $(a) = 0$	M1
	$2\left(\frac{3y^2}{k}\right)^2 + y^3 = ky\left(\frac{3y^2}{k}\right)$ or	Attempts to substitute an equation in $2x^2 + y^3 = kxy$ to obtain an equation in one variable. The equation substituted must be a	M1
	$2x^2 + \left(\frac{kx}{3}\right)^{\frac{3}{2}} = kx\left(\frac{kx}{3}\right)^{\frac{1}{2}}$	result of the denominator, or the numerator, set = 0 Condone slips on a coefficient but expect correct powers to be used.	
	$y = \frac{k^2}{9}$ or $x = \frac{k^3}{27}$	Correct value for x or y. Allow unsimplified, eg. $x = \frac{3k^3}{81}$	A1
	$y = \frac{k^2}{9} \Longrightarrow x = \dots$ or $x = \frac{k^3}{27} \Longrightarrow y = \dots$	Attempts the other coordinate. Dependent upon having scored at least one of the previous two M marks.	M1
	$x = \frac{k^3}{27}$ and $y = \frac{k^2}{9}$	Correct coordinates, which may be unsimplified	A1
			(5)
			Total 9

A common occurrence is where candidates set their numerator = zero. FYI M0 "ky = 4x "

M1 Substitutes "
$$y = \frac{4x}{k}$$
" or in $2x^2 + y^3 = kxy$ to obtain an equation in one variable. eg $2x^2 + \frac{64x^3}{k^3} = 4x^2$
A0 $x = \frac{k^3}{32}$
dM1 Attempts the other coordinate.

np

A0
$$y = \frac{k^2}{8}$$

	0		
Question Number	Scheme	Notes	Marks

12	$250e^{0.2t}$			
	$IV = \frac{1}{1+0.2}$	5e ^{0.2t}		
(a)	$\left(\frac{250e^0}{1+0.25e^0}\right) 200$	200	B1	
			((1)
(b)	$\frac{250e^{0.2t}}{1+0.25e^{0.2t}} = 800 \Longrightarrow 50e^{0.2t} = 800$	Puts $N = 800$ and solves as far as $p e^{\pm 0.2t} = q$ with $p, q > 0$	M1	
	$e^{0.2t} = 16 \Longrightarrow 0.2t = \ln 16$	Correctly takes ln's to reach $\pm 0.2t = \ln(\alpha)$ oe Eg allow $\ln p \pm 0.2t = \ln q \Rightarrow \pm 0.2t =$	dM1	
	$t = 5 \ln 16 = 14$ (nearest integer)	Awrt 14 but allow 5ln16 isw Provided a correct equation has been written down allow awrt 14 (13.86) so long as no incorrect work is seen.	Al	
(c)	$\left(\frac{\mathrm{d}N}{\mathrm{d}t}\right) = \frac{\left(1+0.25\mathrm{e}^{0.2t}\right)50\mathrm{e}^{0.2t}-250\mathrm{e}^{0.2t}\times0.05\mathrm{e}^{0.2t}}{\left(1+0.25\mathrm{e}^{0.2t}\right)^2}$	Uses quotient rule to obtain an expression of the form: $\frac{dN}{dt} = \frac{\alpha e^{0.2t} (1+0.25e^{0.2t}) - \beta e^{0.2t} \times e^{0.2t}}{(1+0.25e^{0.2t})^2}$ Do not withhold this mark if you see incorrect processing on the $e^{0.2t} \times e^{0.2t}$ which may appear as $e^{0.04t}$ or $e^{0.2t^2}$ If rule is quoted it must be correct. Allow attempts via the product rule with $u = 250e^{0.2t}$, $v = (1+0.25e^{0.2t})^{-1}$ to obtain expression of the form $\alpha e^{0.2t} (1+0.25e^{0.2t})^{-1} \pm \beta (e^{0.2t})^2 (1+0.25e^{0.2t})^{-2}$	M1	3)
	$\left(\frac{\mathrm{d}N}{\mathrm{d}t}\right) = \frac{50\mathrm{e}^{0.2t}}{\left(1 + 0.25\mathrm{e}^{0.2t}\right)^2} * \text{ No need for LHS}$	Cso. Withhold this mark if you see $e^{0.2t} \times e^{0.2t} = e^{0.04t^2}$ or similar	A1*	
			((2)
(d)	Sets $10 = \frac{50 e^{0.2t}}{(1+0.25 e^{0.2t})^2} \Rightarrow 3TQ \text{ in } e^{0.2t}$ Look for $\alpha e^{0.4t} + \beta e^{0.2t} + \chi = 0$	Do not withhold any of these marks if the candidate incorrectly processes the $e^{0.2t} \times e^{0.2t}$ but goes on to treat the expression correctly.	M1	
	$\frac{\alpha \left(e^{0.2t}\right)^2 + \beta e^{0.2t} + \chi = 0 \text{ for } \mathbf{M1}}{e^{0.4t} - 72e^{0.2t} + 16 = 0 \text{ oe}}$	A valid alternative is to square root both sides on line one to get a	A1	
	$(e^{0.2t})^2 - 72e^{0.2t} = -16$ oe for A1	quadratic in $e^{0.1t}$		
	For solving the 3TQ in $e^{0.2t}$ AND proceeding to value for T using lns	$FY1 e^{0.2t} - 4\sqrt{5}e^{0.1t} + 4 = 0$ $\Rightarrow e^{0.1t} = 4 + 2\sqrt{5}$	dM1	
	FYI exact answer $e^{-2t} = 36 \pm 16\sqrt{5}$	(T = -7.5 must be deleted if found)		
	T = 21.4 only		A1	
			(T-4,140	<u>(4)</u>
			Total 10)

Question Number	Scheme		Notes	Marks
13(a)	$0.3^2 \times 4^{0.3} = 0.136414491$		Awrt 0.1364 Allow if only in their attempt at (b)	B1
				(1)
(b)	States or uses $h = 0.1$		Implied by $0.05 \times \{\}$	B1
	For the correct structure of the trape	zium ru	ule or the sum of six trapezia	
	Area $\approx \frac{1}{2} \times h \{(0) + 0.8271 + 2(0.0115)\}$	+0.0	0.0528 + 0.1364 + 0.2786 + 0.5)	
	If candida	te write	es	M1
	Area $\approx \frac{1}{2} \times 0.1 \{(0) + 0.8271\} + 2(0.0115 +$	0.05	28 + "0.1364" + 0.2786 + 0.5) = 1.75	
	Then score M0 A0 but if foll	lowed I	by awrt 0.139 allow.	
	Awrt (0.139		A1
				(3)
(c)	Be aware of candidates who use $4^x \equiv e^{x \ln 4}$ t	throug	ghout the question	
		MI: arou	Integrates by parts the right way nd to obtain an expression of the	
	$\int x^2 4^x dx = x^2 \frac{4^x}{\ln 4} - \frac{2}{\ln 4} \int x 4^x dx$	form	$ax^2 4^x - \int bx 4^x dx, b > 0$	M1A1
	•	A1:	$x^2 \frac{4^x}{\ln 4} - \frac{2}{\ln 4} \int x 4^x \mathrm{d}x$	-
		M1:	Integrates by parts again, an	
		expr way	ression of the form $kx4^x$, the right around to obtain an expression of	
	$\int x4^x dx = x\frac{4^x}{\ln 4} - \frac{1}{\ln 4}\int 4^x dx$	the f	form $ax4^x - \int b4^x dx$.	dM1A1
		A1:	$x\frac{4^x}{\ln 4} - \frac{1}{\ln 4}\int 4^x \mathrm{d}x$	
	$\int x^2 4^x dx = \frac{x^2 4^x}{\ln 4} - \frac{2x4^x}{(\ln 4)^2} + \frac{2 \times 4^x}{(\ln 4)^3} (+c)$	All c Allo	correct or equivalent expression. w notation $\ln^3 4$ for $(\ln 4)^3$	Al
				(5)
(d)	$\left[\frac{x^2 4^x}{\ln 4} - \frac{2x 4^x}{(\ln 4)^2} + \frac{2 \times 4^x}{(\ln 4)^3}\right]_0^{0.6} = \frac{0.6^2 4}{\ln 4}$ For an attempt to use correct limits	within $\frac{0.6}{2} - \frac{2}{2}$	$\frac{2 \times 0.6 \times 4^{0.6}}{(\ln 4)^2} + \frac{2 \times 4^{0.6}}{(\ln 4)^3} - \frac{2}{(\ln 4)^3}$ in an answer to (c) of the form	M1
		· ,	r, q, r, o t 0 136	
	(0.887 - 0.751) = 0.136	Note M0 A to th	e that 0.136 without any working is A0 as 0.136 is the calculator answer e definite integral	A1
			<u> </u>	(2)
				Total 11

Question Number	Scheme		Notes	Marks	
14(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3t^2 - 1}{2t}$	M1: Att	tempts to use $\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt}$	M1A1	
	At $t = 2$, $r = 3$, $v = 6$	Correct		B1	
	$y-6 = -\frac{2(2)}{3 \times 2^2 - 1}(x-3)$	Fully contract reciprocation coordinate their $\frac{dy}{dx}$	rect method for the normal using the negative 1 of their $\frac{dy}{dx}$ at $t = 2$ and their stated tes. Allow the gradient to be written down from	M1	
	4x + 11y - 78 = 0*	cso		A1*	
				(5)	
(b) Way 1	$4(12.5 + a\cos t) + 11(15 + a\sin t) - 78 = 0$	Substitu normal	ites the parametric form of C_2 into the	M1	
	$4a\cos t + 11a\sin t = -137$	Rearran But may	ges to $p\cos t + q\sin t = k$ y be implied by further work.	M1	
Via trig or Rcos	$\frac{\text{Max lhs}}{=\sqrt{(4a)^2 + (11a)^2}} \Rightarrow a = \dots$	Attemp Depend	t Pythagoras to find a value for <i>a</i> ent upon both previous M's	ddM1	
	$a = \sqrt{137}$ or $-\sqrt{137}$	A corre	ct value for <i>a</i>	A1	
	$-\sqrt{137} < a < \sqrt{137}$	Correct	inequality	A1	
			1 2	(5)	
(b) Way 2	$y - 15 = \frac{3 \times 2^2 - 1}{2(2)} (x - 12.5)$	Attemp passing	Attempts equation of perpendicular to normal passing through (12.5, 15)		
	$4x + 11y - 78 = 0, \ 22x - 8y - 155 = 0$ $\Rightarrow x = 8.5, \ y = 4$	Solves s	M1		
Via Circle geometry	Max <i>a</i> = $\sqrt{(12.5 - "8.5")^2 + (15 - "4")^2}$	Attemp coordin M's	Attempt distance between (12.5, 15) and their coordinates. Dependent upon both previous M's		
	$a = \sqrt{137}$ or $-\sqrt{137}$	Correct	value for <i>a</i>	Al	
	$-\sqrt{137} < a < \sqrt{137}$	Correct	inequality	Al	
				(5)	
(b) Way 3	$(x-12.5)^2 + (y-15)^2 = a^2$	Attempt as $y = 1$	t Cartesian equation. This may appear using the identity $\sin t = \sqrt{1 - \cos^2 t}$	M1	
	$x = \frac{78 - 1}{100}$	$\frac{11y}{11}$ or v	$y = \frac{78 - 4x}{100}$		
	$\Rightarrow \left(\frac{78 - 11y}{4} - 12.5\right)^2 + \left(y - 15\right)^2$ Substitutes to set up a quadra	$\left(\frac{78-11y}{4}-12.5\right)^{2} + \left(y-15\right)^{2} = a^{2} \text{ or } \Rightarrow \left(x-12.5\right)^{2} + \left(\frac{78-4x}{11}-15\right)^{2} = a^{2}$			
Via simultaneous	$137v^2 - 1096v + 4384 - 16a^2 =$	0 or 137	$x^2 - 2329x + 2647525 - 121a^2 = 0$		
equations and discriminant	$\begin{array}{c} 1579 \\ \hline \end{array} \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \hline \end{array} \\ \\ \hline \\ \\ \hline \end{array} \\ \\ \\ \hline \\ \\ \\ \hline \end{array} \\ \\ \\ \\$	al value f	for a using $b^2 - 4ac_0 0 \Rightarrow 0e_0$		
	$1096^2 - 4 \times 137(4384 - 16a^2) < 1000$	0 or 2329	$\theta^2 - 4 \times 137 (26475.25 - 121a^2) < 0$	ddM1	
	Dependent u	upon botł	n previous M's		
	$a = \sqrt{137}$ or $-\sqrt{137}$		Correct value for <i>a</i>	Al	
	$-\sqrt{137} < \overline{a} < \sqrt{137}$		Correct inequality	A1	
				(5)	
				Total 10	

Note: There may be many other ways of attempting this question. Consider each one carefully please. (a) Via Cartesian coordinates:

M1: Attempts y in terms of x. FYI $y = (x+1)^{\frac{3}{2}} - (x+1)^{\frac{1}{2}}$ and attempts chain rule condoning slips

Alt $y = x(x+1)^{\frac{1}{2}}$ and attempts product rule condoning slips

A1:
$$\frac{dy}{dx} = \frac{3}{2}(x+1)^{\frac{1}{2}} - \frac{1}{2}(x+1)^{-\frac{1}{2}}$$
 or $\frac{dy}{dx} = (x+1)^{\frac{1}{2}} + \frac{1}{2}x(x+1)^{-\frac{1}{2}}$

In (b)

Alternatively, for all three M's, finds the distance from $(\alpha,\beta) = (12.5,15)$ to ax + by + c = 0 (4x + 11y - 78 = 0)

using
$$\frac{|a\alpha + b\beta + c|}{\sqrt{a^2 + b^2}}$$

A1: $a = \sqrt{137}$
A1: $-\sqrt{137} < a < \sqrt{137}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE